轉(zhuǎn)到網(wǎng)站首頁(yè)
轉(zhuǎn)為中文步驟:
1、請(qǐng)用電腦端360瀏覽器打開(kāi)本頁(yè)地址,如您電腦未安裝360瀏覽器,請(qǐng)點(diǎn)這里下載;
2、點(diǎn)擊360瀏覽器右上角的翻譯插件,如右圖紅圈中所示:
3、點(diǎn)擊所彈出窗口里的右下角的按鈕 “翻譯當(dāng)前網(wǎng)頁(yè)”;
4、彈窗提示翻譯完畢后關(guān)閉彈窗即可;
Data Sheet  
LM358, LM324  
Low Power, 3V to 36V, Single/Dual/Quad Ampli?ers  
F E A T U R E S  
General Description  
n?  
Unity gain stable  
The LM358 (dual), and LM324 (quad) are voltage feedback ampli?ers that  
n?  
n?  
n?  
n?  
n?  
n?  
n?  
n?  
100dB voltage gain  
are internally frequency compensated to provide unity gain stability. At unity  
gain (G=1), these ampli?ers offer 550kHz of bandwidth. They consume only  
0.5mA of supply current over the entire power supply operating range. The  
LM358, and LM324 are speci?cally designed to operate from single or dual  
supply voltages.  
550kHz unity gain bandwidth  
0.5mA supply current  
20nA input bias current  
2mV input offset voltage  
3V to 36V single supply voltage range  
±1.5V to ±18V dual supply voltage range  
Input common mode voltage range  
The LM358, and LM324 offer a common mode voltage range that includes  
ground and a wide output voltage swing. The combination of low-power,  
high supply voltage range, and low supply current make these ampli?ers well  
suited for many general purpose applications and as alternatives to several  
industry standard ampli?ers on the market today.  
includes ground  
n?  
0V to VS-1.5V output voltage swing  
n?  
Improved replacements for industry  
standard LM358 and LM324  
n?  
LM358: Pb-free SOIC-8  
Typical Application - Voltage Controlled Oscillator (VCO)  
n?  
LM324: Pb-free SOIC-14  
A P P L I C A T I O N S  
n?  
Battery Charger  
0.05μF  
n?  
Active Filters  
n?  
Transducer ampli?ers  
R
n?  
1/2  
General purpose controllers  
100k  
51k  
V
CC  
n?  
General purpose instruments  
LM358  
1/2  
+
Output 1  
Output 2  
CLML3x585
51k  
V+/2  
10k  
+
R/2  
50k  
51k  
100k  
Ordering Information  
Part Number  
LM358ISO8X  
LM324ISO14X  
Package  
SOIC-8  
Pb-Free  
Yes  
RoHS Compliant  
Operating Temperature Range Packaging Method  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
Reel  
Reel  
SOIC-14  
Yes  
Moisture sensitivity level for all parts is MSL-1.  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
Data Sheet  
LM358 Pin Con?guration  
LM358 Pin Con?guration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
3
4
5
6
7
8
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
1
2
3
4
8
7
+V  
S
OUT1  
-IN1  
+IN1  
OUT2  
-IN2  
-V  
S
6
5
+IN1  
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
Positive supply  
+IN2  
-V  
S
OUT2  
+V  
S
LM324 Pin Con?guration  
LM324 Pin Con?guration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Positive supply  
1
2
3
4
14  
13  
12  
11  
10  
9
3
+IN1  
OUT1  
-IN1  
OUT4  
4
+V  
S
-IN4  
+IN4  
-VS  
5
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
+IN1  
+VS  
6
7
OUT2  
OUT3  
-IN3  
8
Output, channel 3  
5
6
7
+IN2  
+IN3  
-IN3  
OUT3  
9
Negative input, channel 3  
Positive input, channel 3  
Negative supply  
-IN2  
10  
11  
12  
13  
14  
+IN3  
8
OUT2  
-V  
S
+IN4  
-IN4  
Positive input, channel 4  
Negative input, channel 4  
Output, channel 4  
OUT4  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
2
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots re?ect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
Unit  
Supply Voltage  
40  
40  
V
V
Differential Input Voltage  
Input Voltage  
-0.3  
40  
V
Power Dissipation (T = 25°C) - SOIC-8  
550  
800  
mW  
mW  
A
Power Dissipation (T = 25°C) - SOIC-14  
A
Reliability Information  
Parameter  
Min  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
SOIC-8  
150  
150  
260  
°C  
°C  
°C  
-65  
100  
88  
°C/W  
°C/W  
SOIC-14  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
Supply Voltage Range  
-40  
+85  
°C  
V
3 (±1.5)  
36 (±18)  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
3
Data Sheet  
Electrical Characteristics  
T = 25°C (if bold, T = -40 to +85°C), V = +5V, -V = GND, R = R =2kΩ, R = 2kΩ to V /2, G = 2; unless otherwise  
A
A
s
s
f
g
L
S
noted.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
G = +1, VOUT = 0.2Vpp, VS = 5V  
G = +1, VOUT = 0.2Vpp, VS = 30V  
G = +2, VOUT = 0.2Vpp, VS = 5V  
G = +1, VOUT = 0.2Vpp, VS = 30V  
G = +2, VOUT = 1Vpp, VS = 5V  
G = +2, VOUT = 2Vpp, VS = 30V  
330  
550  
300  
422  
107  
76  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
UGBWSS  
BWSS  
Unity Gain Bandwidth  
-3dB Bandwidth  
BWLS  
Large Signal Bandwidth  
Time Domain Response  
VOUT = 1V step; (10% to 90%), VS = 5V  
VOUT = 2V step; (10% to 90%), VS = 30V  
VOUT = 0.2V step  
4
μs  
μs  
tR, tF  
OS  
Rise and Fall Time  
5.6  
1
Overshoot  
Slew Rate  
%
1V step, VS = 5V  
200  
285  
V/ms  
V/ms  
SR  
4V step, VS = 30V  
Distortion/Noise Response  
VOUT = 2Vpp, f = 1kHz, G = 20dB,  
CL = 100pF, VS = 30V  
THD  
en  
Total Harmonic Distortion  
0.015  
%
> 10kHz, VS = 5V  
45  
40  
nV/√Hz  
nV/√Hz  
dB  
Input Voltage Noise  
Crosstalk  
> 10kHz, VS = 30V  
Channel-to-channel, 1kHz to 20kHz  
XTALK  
120  
DC Performance  
2
5
mV  
mV  
μV/°C  
nA  
VIO  
Input Offset Voltage (1)  
Average Drift  
VOUT = 1.4V, RS = 0Ω, VS = 5V to 30V  
7
dVIO  
7
20  
100  
200  
30  
Ib  
Input Bias Current (1)  
VCM = 0V  
nA  
5
nA  
IOS  
Input Offset Current (1)  
Power Supply Rejection Ratio (1)  
Open-Loop Gain (1)  
VCM = 0V  
100  
nA  
70  
60  
85  
100  
100  
dB  
PSRR  
AOL  
DC, VS = 5V to 30V  
dB  
dB  
+VS = 15V, RL = ≥2kΩ, VOUT = 1V to 11V  
80  
dB  
RL = ∞, VS = 30V  
RL = ∞, VS = 5V  
RL = ∞, VS = 30V  
RL = ∞, VS = 5V  
0.7  
0.5  
1.0  
0.7  
2.0  
1.2  
3.0  
1.2  
mA  
mA  
mA  
mA  
Supply Current, LM358 (1)  
Supply Current, LM324 (1)  
Input Characteristics  
+VS  
- 1.5  
CMIR  
Common Mode Input Range (1,3)  
Common Mode Rejection Ratio (1)  
+VS = 30V  
0
V
60  
70  
dB  
dB  
CMRR  
DC, VCM = 0V to (+VS - 1.5V)  
60  
Output Characteristics  
26  
26  
27  
V
V
+VS = 30V, RL = 2kΩ  
+VS = 30V, RL = 10kΩ  
+VS = 5V, RL = 10kΩ  
VOH  
Output Voltage Swing, High (1)  
28  
5
V
27  
V
20  
mV  
mV  
VOL  
Output Voltage Swing, Low (1)  
30  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
4
Data Sheet  
Electrical Characteristics continued  
T = 25°C (if bold, T = -40 to +85°C), V = +5V, -V = GND, R = R =2kΩ, R = 2kΩ to V /2, G = 2; unless otherwise  
A
A
s
s
f
g
L
S
noted.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
20  
20  
10  
5
40  
mA  
ISOURCE  
Output Current, Sourcing (1)  
VIN+ = 1V, VIN- = 0V, +VS = 15V, VOUT = 2V  
VIN+ = 0V, VIN- = 1V, +VS = 15V, VOUT = 2V  
15  
mA  
ISINK  
Output Current, Sinking (1)  
VIN+ = 0V, VIN- = 1V, +VS = 15V, VOUT = 0.2V  
+VS = 15V  
12  
50  
40  
μA  
ISC  
Short Circuit Output Current (1)  
60  
mA  
Notes:  
1. 100% tested at 25°C. (Limits over the full temperature range are guaranteed by design.)  
2. The input common mode voltage of either input signal voltage should be kept > 0.3V at 25°C. The upper end of the common-mode voltage range is +V - 1.5V at  
S
25°C, but either or both inputs can go to +36V without damages, independent of the magnitude of V .  
S
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
5
Data Sheet  
Typical Performance Characteristics  
T = 25°C, +V = 30V, -V = GND, R = R =2kΩ, R = 2kΩ, G = 2; unless otherwise noted.  
A
s
s
f
g
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
5
5
G = 1  
Rf = 0  
0
-5  
0
-5  
G = -1  
G = -2  
G = -5  
G = 2  
G = 5  
-10  
-15  
-10  
-15  
G = 10  
G = -10  
-20  
-20  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
-25  
-25  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C  
Frequency Response vs. R  
L
L
5
5
CL = 1nF  
Rs = 0Ω  
0
0
CL = 100pF  
Rs = 0Ω  
CL = 10nF  
Rs = 0Ω  
RL = 1K  
RL = 2K  
RL = 5K  
-5  
-5  
-10  
-15  
-20  
-25  
CL = 5nF  
Rs = 0Ω  
-10  
-15  
-20  
-25  
RL = 10K  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. V  
-3dB Bandwidth vs. V  
OUT  
OUT  
5
500  
0
-5  
400  
300  
200  
100  
0
Vout = 2Vpp  
Vout = 4Vpp  
-10  
-15  
-20  
-25  
0.01  
0.1  
1
10  
0.0  
1.0  
2.0  
3.0  
4.0  
Frequency (MHz)  
VOUT (VPP)  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
6
Data Sheet  
Typical Performance Characteristics  
T = 25°C, +V = 30V, -V = GND, R = R =2kΩ, R = 2kΩ, G = 2; unless otherwise noted.  
A
s
s
f
g
L
Non-Inverting Frequency Response at V = 5V  
Inverting Frequency Response at V = 5V  
S
S
5
5
G = 1  
Rf = 0  
0
-5  
0
G = -1  
G = -2  
-5  
G = 2  
-10  
-15  
-20  
-25  
-10  
-15  
G = 5  
G = -5  
G = 10  
G = -10  
-20  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
-25  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C at V = 5V  
Frequency Response vs. R at V = 5V  
L
S
L
S
5
5
CL = 1nF  
Rs = 0Ω  
0
0
CL = 100pF  
Rs = 0Ω  
CL = 10nF  
-5  
-5  
RL = 1K  
Rs = 0Ω  
CL = 5nF  
Rs = 0Ω  
RL = 2K  
RL = 5K  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
RL = 10K  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. V  
at V = 5V  
-3dB Bandwidth vs. V  
at V = 5V  
OUT  
S
OUT  
S
5
400  
350  
300  
250  
200  
150  
100  
50  
0
-5  
Vout = 1Vpp  
Vout = 2Vpp  
-10  
-15  
-20  
-25  
0
0.01  
0.1  
1
10  
0.0  
0.5  
1.0  
1.5  
2.0  
Frequency (MHz)  
VOUT (VPP)  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
7
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, +V = 30V, -V = GND, R = R =2kΩ, R = 2kΩ, G = 2; unless otherwise noted.  
A
s
s
f
g
L
Small Signal Pulse Response  
Large Signal Pulse Response  
2.65  
5.00  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
4.00  
3.00  
2.00  
1.00  
0.00  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time (us)  
Time (us)  
Small Signal Pulse Response at V = 5V  
Large Signal Pulse Response at V = 5V  
S
S
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time (us)  
Time (us)  
Supply Current vs. Supply Voltage  
Input Voltage Range vs. Power Supply  
1
0.9  
0.8  
15  
CLC4050  
0.7  
10  
0.6  
NEGATIVE  
POSITIVE  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CLC2050  
CLC1050  
5
0
VOUT = 0.2Vpp  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply Voltage (V)  
Power Supply Voltage (+/-Vdc)  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
8
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, +V = 30V, -V = GND, R = R =2kΩ, R = 2kΩ, G = 2; unless otherwise noted.  
A
s
s
f
g
L
Voltage Gain vs. Supply Voltage  
Input Current vs. Temperature  
120  
20  
18  
16  
14  
12  
10  
8
RL=2K  
105  
90  
RL=20K  
6
75  
4
VOUT = 0.2Vpp  
2
60  
0
0
8
16  
24  
32  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
Power Supply Voltage (V)  
Temperature(°C)  
Functional Block Diagram  
VCC  
6μA  
4μA  
100μA  
Q5  
Q6  
Q2  
Q3  
Cc  
Q7  
Q4  
Q1  
Rsc  
Inputs  
Output  
+
Q11  
Q13  
Q10  
Q12  
50μA  
Q8  
Q9  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
9
Data Sheet  
Power Dissipation  
Application Information  
Power dissipation should not be a factor when operating  
under the stated 2k ohm load condition. However, ap-  
plications with low impedance, DC coupled loads should  
be analyzed to ensure that maximum allowed junction  
temperature is not exceeded. Guidelines listed below can  
be used to verify that the particular application will not  
cause the device to operate beyond it’s intended operat-  
ing range.  
Basic Operation  
Figures 1, 2, and 3 illustrate typical circuit con?gurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
+Vs  
6.8μF  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction tem-  
0.1μF  
Input  
+
-
perature, the package thermal resistance value Theta  
JA  
Output  
(? ) is used along with the total die power dissipation.  
JA  
RL  
T
= T + (? × P )  
Ambient JA D  
Junction  
0.1μF  
6.8μF  
Rf  
Where T  
is the temperature of the working environment.  
Ambient  
Rg  
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by  
the supplies.  
G = 1 + (Rf/Rg)  
D
-Vs  
Figure 1. Typical Non-Inverting Gain Circuit  
P = P  
- P  
load  
D
supply  
+Vs  
Supply power is calculated by the standard power equa-  
tion.  
6.8μF  
R1  
P
= V  
× I  
supply  
supply RMS supply  
0.1μF  
+
Output  
Rg  
V
= V - V  
S+ S-  
supply  
Input  
-
RL  
Power delivered to a purely resistive load is:  
0.1μF  
Rf  
2
P
= ((V  
)
)/Rload  
eff  
load  
LOAD RMS  
6.8μF  
G = - (Rf/Rg)  
-Vs  
The effective load resistor (Rload ) will need to include  
the effect of the feedback network. For instance,  
eff  
For optimum input offset  
voltage set R1 = Rf || Rg  
Rload in ?gure 3 would be calculated as:  
Figure 2. Typical Inverting Gain Circuit  
eff  
R || (R + R )  
L
f
g
+Vs  
6.8μF  
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
0.1μF  
Input  
+
Output  
Here, P can be found from  
D
-
RL  
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
0.1μF  
Quiescent power can be derived from the speci?ed I val-  
S
ues along with known supply voltage, V  
can be calculated as above with the desired signal ampli-  
tudes using:  
. Load power  
Supply  
6.8μF  
G = 1  
-Vs  
Figure 3. Unity Gain Circuit  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
Data Sheet  
(V  
)
= V  
/ √2  
LOAD RMS  
PEAK  
C (pF)  
L
R (Ω)  
S
-3dB BW (kHz)  
( I  
)
= ( V  
)
/ Rload  
LOAD RMS  
LOAD RMS eff  
1nF  
5nF  
0
0
0
0
485  
390  
260  
440  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
10nF  
100  
P
= (V - V  
)
× ( I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
Assuming the load is referenced in the middle of the pow-  
er rails or V /2.  
supply  
Table 1: Recommended R vs. C  
S
L
Figure 4 shows the maximum safe power dissipation in  
the package vs. the ambient temperature for the pack-  
ages available.  
For a given load capacitance, adjust R to optimize the  
tradeoff between settling time and bandwidth. In general,  
S
reducing R will increase bandwidth at the expense of ad-  
S
ditional overshoot and ringing.  
2.5  
SOIC-16  
2
Overdrive Recovery  
An overdrive condition is de?ned as the point when either  
one of the inputs or the output exceed their speci?ed volt-  
age range. Overdrive recovery is the time needed for the  
ampli?er to return to its normal or linear operating point.  
The recovery time varies, based on whether the input or  
output is overdriven and by how much the range is ex-  
ceeded. The LM358/LM324 will typically recover in less  
than 30ns from an overdrive condition. Figure 6 shows the  
LM358 in an overdriven condition.  
1.5  
SOT23-6  
1
0.5  
SOT23-5  
0
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Figure 4. Maximum Power Derating  
4
3.5  
3
4
VIN = 1.25Vpp  
G = 5  
3.5  
3
Driving Capacitive Loads  
Input  
2.5  
2
2.5  
2
Increased phase delay at the output due to capacitive load-  
ing can cause ringing, peaking in the frequency response,  
and possible unstable behavior. Use a series resistance, R ,  
between the ampli?er and the load to help improve stability  
and settling performance. Refer to Figure 5.  
1.5  
1
1.5  
1
Output  
S
0.5  
0
0.5  
0
-0.5  
-0.5  
Input  
+
-
Rs  
0
20  
40  
60  
80  
100  
Output  
Time (us)  
CL  
RL  
Rf  
Figure 6. Overdrive Recovery  
Rg  
Figure 5. Addition of R for Driving  
S
Capacitive Loads  
Table 1 provides the recommended R for various capaci-  
S
tive loads. The recommended R values result in <=1dB  
S
peaking in the frequency response. The Frequency Re-  
sponse vs. C plot, on page 6, illustrates the response of  
L
the LM358/LM324.  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
Data Sheet  
Layout Considerations  
General layout and supply bypassing play major roles in  
high frequency performance. CADEKA has evaluation  
boards to use as a guide for high frequency layout and as  
an aid in device testing and characterization. Follow the  
steps below as a basis for high frequency layout:  
? Include 6.8μF and 0.1μF ceramic capacitors for power  
supply decoupling  
? Place the 6.8μF capacitor within 0.75 inches of the power pin  
? Place the 0.1μF capacitor within 0.1 inches of the power pin  
? Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance  
? Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more in-  
formation.  
Figure 7. CEB006 Schematic  
Evaluation Board Information  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
Evaluation Board #  
CEB006  
CEB018  
Products  
LM358  
LM324  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in Fig-  
ures 7-12. These evaluation boards are built for dual- sup-  
ply operation. Follow these steps to use the board in a  
single-supply application:  
Figure 8. CEB006 Top View  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the ampli?er is not  
S
directly connected to the ground plane.  
Figure 9. CEB006 Bottom View  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
Data Sheet  
Figure 11 CEB018 Top View  
Figure 10. CEB018 Schematic  
Figure 12. CEB018 Bottom View  
Typical Applications  
R1  
Opto Isolator  
R6  
VCC  
1/2  
LM358  
AC Line  
SMPS  
Battery  
Pack  
+
GND  
R7  
R3  
R4  
R5  
Current  
Sense  
VCC  
1/2  
R2  
CLCx050  
LM358  
+
GND  
R8  
AZ431  
Figure 13. Battery Charger  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
Data Sheet  
V
cc  
R1  
910K  
VCC  
R2  
+
2V  
+
2V  
1/2  
LM358  
R3  
2k  
R1  
2k  
R2  
100K  
R3  
CLCx050  
+V  
VO  
+
IN  
91K  
1/2  
RL  
CLCx050  
LM358  
+
I1  
1mA  
I2  
R4  
3k  
Figure 14. Power Ampli?er  
Figure 17. Fixed Current Sources  
R1  
+V1  
+V2  
100k  
R2  
+
1/2  
VO  
CLCx050  
LM358  
R5  
100k  
R1  
1M  
R2  
100k  
R3  
+V3  
+V4  
R6  
100k  
R4  
100k  
100k  
0.001μF  
100k  
1/2  
LM358
V
O
+
R3  
R5  
V
cc  
Figure 15. DC Summing Ampli?er  
100k  
100k  
R4  
100k  
Figure 18. Pulse Generator  
R1  
R2  
100k  
1M  
C1  
0.1μF  
C
O
1/2  
V
O
LM358  
Lx50  
CIN  
C1  
R
R
L
0.01μF  
+
B
6.2k  
10k  
R3  
1M  
R1  
16k  
R2  
R4  
100k  
R5  
AC  
V
IN  
+
V
CC  
16k  
1/2  
V
O
CLCx050  
LM358  
C2  
10μF  
C2  
0.01μF  
A
= 1 + R2/R1  
V
V
R3  
100k  
100k  
A
= 11 (As shown)  
V
O
R4  
100k  
fO=1kHz  
Q=1  
A =2  
fO  
0
V
Figure 16. AC-Coupled Non-Inverting Ampli?er  
Figure 19. DC-Coupled Low-Pass Active Filter  
?2011 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
Data Sheet  
Mechanical Dimensions  
SOIC-8 Package  
SOIC-14 Package  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
CADEKA Headquarters Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
CADEKA, the CADEKA logo design, COMLINEAR, and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Copyright ?2011 by CADEKA Microcircuits LLC. All rights reserved.