轉到網站首頁
轉為中文步驟:
1、請用電腦端360瀏覽器打開本頁地址,如您電腦未安裝360瀏覽器,請點這里下載;
2、點擊360瀏覽器右上角的翻譯插件,如右圖紅圈中所示:
3、點擊所彈出窗口里的右下角的按鈕 “翻譯當前網頁”;
4、彈窗提示翻譯完畢后關閉彈窗即可;
Order this document by LM358/D  
DUAL DIFFERENTIAL INPUT  
OPERATIONAL AMPLIFIERS  
Utilizing the circuit designs perfected for recently introduced Quad  
Operational Amplifiers, these dual operational amplifiers feature 1) low  
power drain, 2) a common mode input voltage range extending to  
ground/V , 3) single supply or split supply operation and 4) pinouts  
compatible with the popular MC1558 dual operational amplifier. The LM158  
series is equivalent to one–half of an LM124.  
EE  
SEMICONDUCTOR  
TECHNICAL DATA  
These amplifiers have several distinct advantages over standard  
operational amplifier types in single supply applications. They can operate at  
supply voltages as low as 3.0 V or as high as 32 V, with quiescent currents  
about one–fifth of those associated with the MC1741 (on a per amplifier  
basis). The common mode input range includes the negative supply, thereby  
eliminating the necessity for external biasing components in many  
applications. The output voltage range also includes the negative power  
supply voltage.  
8
1
N SUFFIX  
PLASTIC PACKAGE  
CASE 626  
? Short Circuit Protected Outputs  
? True Differential Input Stage  
? Single Supply Operation: 3.0 V to 32 V  
? Low Input Bias Currents  
? Internally Compensated  
? Common Mode Range Extends to Negative Supply  
? Single and Split Supply Operation  
? Similar Performance to the Popular MC1558  
8
1
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
(SO–8)  
? ESD Clamps on the Inputs Increase Ruggedness of the Device without  
Affecting Operation  
MAXIMUM RATINGS (T = +25°C, unless otherwise noted.)  
PIN CONNECTIONS  
A
LM258  
LM358  
LM2904  
LM2904V  
Rating  
Symbol  
Unit  
1
8
7
6
5
Output A  
V
CC  
2
Power Supply Voltages  
Single Supply  
Vdc  
Output B  
+
Inputs A  
V
CC  
32  
26  
3
4
+
Inputs B  
Split Supplies  
V , V  
CC EE  
±16  
±13  
V
/Gnd  
EE  
Input Differential Voltage  
Range (Note 1)  
V
V
t
±32  
±26  
Vdc  
Vdc  
IDR  
ICR  
SC  
(Top View)  
Input Common Mode Voltage  
Range (Note 2)  
–0.3 to 32  
–0.3 to 26  
ORDERING INFORMATION  
Operating  
Output Short Circuit Duration  
Junction Temperature  
Continuous  
T
J
150  
°C  
°C  
°C  
Temperature Range  
Device  
LM2904D  
LM2904N  
LM2904VD  
LM2904VN  
LM258D  
Package  
Storage Temperature Range  
T
–55 to +125  
SO–8  
stg  
T
= –40° to +105°C  
= –40° to +125°C  
= –25° to +85°C  
A
Operating Ambient Temperature  
Range  
T
A
Plastic DIP  
SO–8  
LM258  
LM358  
LM2904  
LM2904V  
–25 to +85  
0 to +70  
T
A
Plastic DIP  
SO–8  
–40 to +105  
–40 to +125  
T
A
LM258N  
Plastic DIP  
SO–8  
NOTES: 1. Split Power Supplies.  
2. For Supply Voltages less than 32 V for the LM258/358 and 26 V for the LM2904, the  
absolute maximum input voltage is equal to the supply voltage.  
LM358D  
LM358N  
T
= 0° to +70°C  
A
Plastic DIP  
Motorola, Inc. 1996  
Rev 2  
LM358, LM258, LM2904, LM2904V  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 5.0 V, V  
= Gnd, T = 25°C, unless otherwise noted.)  
EE A  
LM258  
LM358  
LM2904  
LM2904V  
Typ Max  
Characteristic  
Input Offset Voltage  
Symbol  
Unit  
Min  
Typ Max Min  
Typ Max Min  
Typ Max Min  
V
mV  
IO  
V
= 5.0 V to 30 V (26 V for  
CC  
LM2904, V), V = 0 V to V  
–1.7 V,  
CC  
IC  
1.4 V, R = 0 ?  
V
O
S
T
= 25°C  
2.0  
5.0  
7.0  
2.0  
2.0  
7.0  
9.0  
9.0  
2.0  
7.0  
10  
10  
A
T
= T  
= T  
(Note 1)  
13  
10  
A
high  
(Note 1)  
low  
T
A
Average Temperature Coefficient of Input  
Offset Voltage  
?V /?T  
7.0  
7.0  
7.0  
7.0  
μV/°C  
IO  
T
A
= T  
to T (Note 1)  
low  
high  
Input Offset Current  
I
3.0  
30  
5.0  
50  
5.0  
45  
50  
5.0  
45  
50  
nA  
IO  
T
= T  
to T  
(Note 1)  
(Note 1)  
100  
150  
200  
200  
A
high  
Input Bias Current  
= T to T  
low  
I
–45  
–50  
–150  
–300  
–45  
–50  
–250  
–500  
–45  
–50  
–250  
–500  
–45  
–50  
–250  
–500  
IB  
T
A
high  
low  
Average Temperature Coefficient of Input  
Offset Current  
?I /?T  
10  
10  
10  
10  
pA/°C  
IO  
T
= T  
to T (Note 1)  
low  
A
high  
Input Common Mode Voltage Range  
(Note 2),V = 30 V (26 V for LM2904, V)  
V
V
ICR  
0
0
28.3  
28  
0
0
28.3  
28  
0
0
24.3  
24  
0
0
24.3  
24  
CC  
= 30 V (26 V for LM2904, V),  
V
T
CC  
= T  
to T  
A
high low  
Differential Input Voltage Range  
V
V
V
V
V
V
IDR  
CC  
CC  
CC  
CC  
Large Signal Open Loop Voltage Gain  
A
V/mV  
VOL  
R
= 2.0 k?, V  
= 15 V, For Large V  
50  
100  
25  
100  
25  
100  
25  
100  
L
CC  
O
Swing,  
= T  
T
to T  
low  
(Note 1)  
25  
15  
15  
15  
A
high  
Channel Separation  
CS  
–120  
–120  
–120  
–120  
dB  
dB  
1.0 kHz f 20 kHz, Input Referenced  
Common Mode Rejection  
CMR  
PSR  
70  
65  
85  
65  
65  
70  
50  
50  
70  
50  
50  
70  
R
10 k?  
S
Power Supply Rejection  
100  
100  
100  
100  
dB  
V
Output Voltage–High Limit (T = T  
A
to  
V
high  
OH  
T
) (Note 1)  
low  
V
= 5.0 V, R = 2.0 k?, T = 25°C  
3.3  
26  
3.5  
3.3  
26  
3.5  
3.3  
22  
3.5  
3.3  
22  
3.5  
CC  
L
A
V
R
= 30 V (26 V for LM2904, V),  
= 2.0 k?  
CC  
L
V
R
= 30 V (26 V for LM2904, V),  
= 10 k?  
27  
28  
27  
28  
23  
24  
23  
24  
CC  
L
Output Voltage–Low Limit  
= 5.0 V, R = 10 k?, T = T to  
high  
V
5.0  
20  
5.0  
20  
5.0  
20  
5.0  
20  
mV  
mA  
OL  
V
T
CC  
L
A
(Note 1)  
low  
Output Source Current  
= +1.0 V, V  
I
20  
40  
20  
40  
20  
40  
20  
40  
O +  
V
= 15 V  
= 15 V  
ID  
CC  
Output Sink Current  
I
O –  
V
V
= –1.0 V, V  
10  
12  
20  
50  
10  
12  
20  
50  
10  
20  
10  
20  
mA  
ID  
ID  
CC  
= –1.0 V, V = 200 mV  
μA  
O
Output Short Circuit to Ground (Note 3)  
I
40  
60  
40  
60  
40  
60  
40  
60  
mA  
mA  
SC  
Power Supply Current (T = T  
A
to T  
)
I
high  
low  
CC  
(Note 1)  
V
V
= 30 V (26 V for LM2904, V),  
1.5  
0.7  
3.0  
1.2  
1.5  
0.7  
3.0  
1.2  
1.5  
0.7  
3.0  
1.2  
1.5  
0.7  
3.0  
1.2  
CC  
O
= 0 V, R = ∞  
L
V
= 5 V, V = 0 V, R = ∞  
CC  
O
L
NOTES: 1. T  
=
=
=
=
–40°C for LM2904  
T
= +105°C for LM2904  
= +125°C for LM2904V  
= +85°C for LM258  
= +70°C for LM358  
low  
high  
–40°C for LM2904V  
–25°C for LM258  
0°C for LM358  
2. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common  
mode voltage range is V –1.7 V.  
CC  
3. Short circuits from the output to V  
on all amplifiers.  
can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts  
CC  
2
MOTOROLA ANALOG IC DEVICE DATA  
LM358, LM258, LM2904, LM2904V  
Single Supply  
Split Supplies  
3.0 V to V  
CC(max)  
V
V
CC  
CC  
EE  
1.5 V to V  
CC(max)  
1
2
1
2
1.5 V to V  
EE(max)  
V
V
/Gnd  
EE  
Representative Schematic Diagram  
(One–Half of Circuit Shown)  
Bias Circuitry  
Common to Both  
Amplifiers  
Output  
V
CC  
Q15  
Q22  
Q16  
Q14  
Q13  
40 k  
Q19  
5.0 pF  
Q12  
Q24  
Q23  
25  
Q20  
Q21  
Q18  
Inputs  
Q11  
Q9  
Q17  
Q25  
Q6  
Q7  
Q2  
Q5  
Q1  
2.4 k  
Q8  
Q10  
Q3  
Q4  
Q26  
2.0 k  
V
/Gnd  
EE  
CIRCUIT DESCRIPTION  
The LM258 series is made using two internally  
compensated, two–stage operational amplifiers. The first  
stage of each consists of differential input devices Q20 and  
Q18 with input buffer transistors Q21 and Q17 and the  
differential to single ended converter Q3 and Q4. The first  
stage performs not only the first stage gain function but also  
performs the level shifting and transconductance reduction  
functions. By reducing the transconductance, a smaller  
compensation capacitor (only 5.0 pF) can be employed, thus  
saving chip area. The transconductance reduction is  
accomplished by splitting the collectors of Q20 and Q18.  
Another feature of this input stage is that the input common  
mode range can include the negative supply or ground, in  
single supply operation, without saturating either the input  
devices or the differential to single–ended converter. The  
second stage consists of a standard current source load  
amplifier stage.  
Large Signal Voltage  
Follower Response  
V
R
= 15 Vdc  
CC  
L
= 2.0 k?  
T
= 25°C  
A
5.0 μs/DIV  
Each amplifier is biased from an internal–voltage regulator  
which has a low temperature coefficient thus giving each  
amplifier good temperature characteristics as well as  
excellent power supply rejection.  
3
MOTOROLA ANALOG IC DEVICE DATA  
LM358, LM258, LM2904, LM2904V  
Figure 1. Input Voltage Range  
Figure 2. Large–Signal Open Loop Voltage Gain  
20  
18  
120  
V
V
= 15 V  
= Gnd  
CC  
EE  
100  
80  
16  
T
= 25  
°C  
A
14  
12  
60  
10  
Negative  
40  
8.0  
6.0  
4.0  
Positive  
20  
0
2.0  
0
–20  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
0
2.0  
4.0  
V
6.0  
/V  
8.0  
10  
12  
14  
16  
18  
20  
POWER SUPPLY VOLTAGES (V)  
f, FREQUENCY (Hz)  
CC EE,  
Figure 4. Small Signal Voltage Follower  
Pulse Response (Noninverting)  
Figure 3. Large–Signal Frequency Response  
14  
12  
550  
V
V
T
= 30 V  
= Gnd  
CC  
EE  
A
= 2.0 k?  
= 15 V  
= Gnd  
L
500  
450  
= 25  
°C  
Input  
C
= 50 pF  
L
10  
R = 1.0 k  
?
I
400  
350  
300  
250  
8.0  
Output  
R
= 100 k?  
F
6.0  
4.0  
2.0  
0
200  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
1.0  
10  
100  
1000  
f, FREQUENCY (kHz)  
t, TIME (ms)  
Figure 5. Power Supply Current versus  
Power Supply Voltage  
Figure 6. Input Bias Current versus  
Supply Voltage  
2.4  
T
R
= 25  
=
°C  
A
L
2.1  
1.8  
1.5  
1.2  
90  
80  
0.9  
0.6  
0.3  
0
70  
0
5.0  
10  
15  
20  
25  
30  
35  
0
2.0  
4.0  
6.0  
8.0  
10  
12  
14  
16  
18  
20  
V
, POWER SUPPLY VOLTAGE (V)  
V , POWER SUPPLY VOLTAGE (V)  
CC  
CC  
4
MOTOROLA ANALOG IC DEVICE DATA  
LM358, LM258, LM2904, LM2904V  
Figure 7. Voltage Reference  
Figure 8. Wien Bridge Oscillator  
50 k  
R1  
V
CC  
5.0 k  
V
CC  
R2  
V
10 k  
CC  
1/2  
1/2  
V
V
ref  
O
LM358  
V
LM358  
+
O
MC1403  
+
2.5 V  
1
π
f
=
o
1
2
2
RC  
V
=
V
CC  
ref  
For:  
f
= 1.0 kHz  
o
R1  
R2  
R = 16 k  
?
μ
R
C
V
= 2.5 V (1 +  
)
O
C
R
C = 0.01  
F
Figure 9. High Impedance Differential Amplifier  
Figure 10. Comparator with Hysteresis  
1
C
+
1/2  
R
e
1
R
Hysteresis  
LM358  
R2  
V
OH  
R1  
V
O
+
V
a R1  
b R1  
ref  
1/2  
R1  
1/2  
e
o
LM358  
+
LM358  
V
O
V
in  
V
OL  
V
V
inH  
1
C
inL  
R
R1  
R1 + R2  
1/2  
V
ref  
(V  
(V  
– V )+ V  
ref ref  
V
=
OL  
inL  
LM358  
+
e
2
R
R1  
R1 + R2  
– V ) + V  
ref ref  
V
=
OH  
inH  
e
= C (1 + a + b) (e – e )  
R1  
R1 + R2  
o
2
1
H =  
(V  
OH  
– V  
)
OL  
Figure 11. Bi–Quad Filter  
1
f
=
o
R
2
π RC  
R
100 k  
R1 = QR  
1
2
C1  
V
=
V
CC  
V
ref  
R2  
C
R1  
in  
C
R2 =  
T
R
BP  
1/2  
100 k  
1/2  
LM358  
LM358  
R3 = T  
N R2  
1/2  
+
C1 = 10 C  
+
LM358  
+
For:  
f
Q
T
= 1.0 kHz  
= 10  
= 1  
V
o
ref  
V
ref  
Bandpass  
Output  
R3  
V
BP  
N
ref  
T
= 1  
R1  
R2  
C1  
1/2  
Notch Output  
R
C
= 160 k  
= 0.001  
R1 = 1.6 M  
R2 = 1.6 M  
R3 = 1.6 M  
?
LM358  
μ
?
?
?
F
+
V
ref  
Where:  
T
T
= Center Frequency Gain  
= Passband Notch Gain  
BP  
N
5
MOTOROLA ANALOG IC DEVICE DATA  
LM358, LM258, LM2904, LM2904V  
Figure 12. Function Generator  
Figure 13. Multiple Feedback Bandpass Filter  
1
2
Triangle Wave  
Output  
V
=
V
R2  
V
ref  
CC  
CC  
R3  
C
300 k  
C
V
+
R1  
ref  
R3  
V
1/2  
in  
+
1/2  
LM358  
1/2  
LM358  
V
75 k  
O
LM358  
R1  
100 k  
Square  
Wave  
Output  
+
CO  
CO = 10 C  
R2  
V
ref  
C
V
ref  
1
2
V
=
V
CC  
ref  
R
f
R1 + R  
R2 R1  
C
f =  
if, R3 =  
Given:  
f = center frequency  
o
4 CR R1  
R2 + R1  
f
A(f ) = gain at center frequency  
o
Choose value f , C  
o
Q
Then: R3 =  
π
f C  
o
R3  
2 A(f )  
R1 =  
R2 =  
o
R1 R3  
2
4Q R1 –R3  
Q
f
o o  
For less than 10% error from operational amplifier.  
Where f and BW are expressed in Hz.  
< 0.1  
BW  
o
If source impedance varies, filter may be preceded with voltage  
follower buffer to stabilize filter parameters.  
6
MOTOROLA ANALOG IC DEVICE DATA  
LM358, LM258, LM2904, LM2904V  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
1
4
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
0.370  
0.240  
0.155  
0.015  
0.040  
F
–A–  
NOTE 2  
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
7.62 BSC  
–––  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.300 BSC  
–––  
0.050  
0.012  
0.135  
C
10  
1.01  
10  
0.040  
0.76  
0.030  
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
1
5
4
M
M
0.25  
B
H
E
h X 45  
MILLIMETERS  
B
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
C
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
7
MOTOROLA ANALOG IC DEVICE DATA  
LM358, LM258, LM2904, LM2904V  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
LM358/D  
?